
AGROS - SOFTWARE FOR PHYSICAL FIELDS SIMULATIONS

P. Karban*, D. Pánek*, J. Kaska*

*University of West Bohemia, Czech Republic
{karban, panek50, kaskaj}@fel.zcu.cz

Keywords: FEM, simulation, modeling, scripting, open
source software, physical fields

Abstract

Agros is an open-source software designed for physical
simulations. The aim of this contribution is to present
features of a new version of this software. It discuss the
architecture of the software, used third party codes,
basic principles of scripting and possibilities of solving
optimization tasks.

1 Introduction

Agros is a software for simulating physical fields using
the finite element method. It has been in development
for more than 14 years. The first versions were based
on the library for finite element modelling Hermes. First,
electrostatic and magnetic fields were implemented.
Gradually, other physical fields and their coupling
possibilities were added. Since 2014, a gradual
transition to a new core -- the Deal.II library has begun.
This transition has been successfully completed and a
new version of the agros software is currently being
prepared for release. The aim of this paper is to
introduce the features and new functionality of the new
version of agros. Note that source code of the project
argos is available at [1].

2 Architecture

When developing the current version of agros, one of
the requirements was to achieve maximum modularity,
so that new components could be added in the simplest
way possible. The structure of agros is shown in Figure
1.

Figure 1: Structure of agros.

2.1 Graphical user interface

The program consists of a graphical user interface
allowing to create two dimensional geometries, set
material properties, and boundary conditions, depicted
in Figure 2, and also to analyse results. Besides
specifying model, running fem calculations and
analysing results, the GUI also allows to set and run
optimization tasks.

Figure 2: Graphical user interface.

2.2 argos library

Agros library is an intermediary between the high level
represented by the GUI or agros wrapper and the low
level represented by the Deal.II library and matrix
solvers. The library allows, based on the mathematical
description of the physical field through the Deal.II, to
construct a system of equations, which is then solved
using the matrix solver. The matrix solver is again
solved as a separate module, which allows adding new
solvers. Currently, it is possible to use the internal solver
of the Deal.II library and the external solvers MUMPS
and AMGCL.

2.3 argos generator

Relatively independent part of the argos project is argos
generator, which produces C++ code from JSON files
describing the mathematical formulations of physical
fields. This code can be compiled, dynamically linked
and directly used from GUI. Using module (JSON) files
and the agros generator is a way to relatively simply add
a new physical field.

cris
Text Box
CEM2025 8-11 April 2025, Bruges, Belgium Paper P2-25

For example the volume integral (first term) from the
weak formulation of electrostatic field in the form

= 0
Ω
∫ ε(∂φ

∂𝑥
∂𝑣
∂𝑥 + ∂φ

∂𝑦
∂𝑣
∂𝑦)𝑑𝑥𝑑𝑦 −

Γ
∫ ε𝑔

𝑁
𝑣𝑑𝑠

can be expressed in the source (JSON) module file by
so called matrix form as

"matrix_forms": {

"laplace": {el_epsr * EPS0 * (udx * vdx + udy *
vdy), "i": 1, "j": 1 }

}

2.4 argos Python wraper

In the current version of agros, scripting has been
separated from the GUI asa separate package, which
can be downloaded from the PYPI system using

pip install agrossuite

The scripting in agrossuite is relatively simple. The first
step is importing and setting basic properties.

from agrossuite import agros

problem = agros.problem(clear = True)
problem.coordinate_type = "planar"
problem.mesh_type = "triangle"

self.electrostatic =
problem.field("electrostatic")

self.electrostatic.analysis_type =
"steadystate"

self.electrostatic.number_of_refinements = 1
self.electrostatic.polynomial_order = 2
self.electrostatic.solver = "linear"

The next step is defining boundary conditions and
materials used in the problem.

self.electrostatic.add_boundary("Neumann",
"electrostatic_surface_charge_density",
{"electrostatic_surface_charge_density" : 0})

self.electrostatic.add_material("Dieletric 1",
{"electrostatic_permittivity" : 3,
"electrostatic_charge_density" : 0})

Than it is possible to add geometry in similar manner as
in GUI using nodes and edges

geometry = problem.geometry()

geometry.add_edge(0, -R_Air, R_Air, 0, angle =
90, boundaries = {"magnetic" : "Zero"})

Material in the certain domain can be specified using
labels.

geometry.add_label(12.3992, 0.556005,
materials = {"electrostatic" : "Dieletric 1"})

Now the problem is set and it is possible to solve it.

self.computation = problem.computation()
self.computation.solve()

The last step is analyzing results

solution =
self.computation.solution('electrostatic')

local_values = solution.local_values(5.06,
7.537)

volume_integrals =
solution.volume_integrals([4])

2.5 OptiLab

Optilab is a tool for solving optimization problems. At the
moment it allows solving both single and multi criteria
optimization problems using most of the basic classes
of optimization methods. The argos contain the following
third party libraries to solve the optimization tasks:
NLopt [2] library for standard methods, BayesOPT [3]
for Bayessian methods and Pagmo [4] for genetic and
swarm algorithms.

Acknowledgements

This publication was created with the support of the
internal project SGS-2024-025 at the University of West
Bohemia.

References

[1] P. Karban at all. agros [online]. Available from:
https://github.com/artap-framework/agrossuite.git
[Accessed 29 December 2024].

[2] Steven G. Johnson. The NLopt nonlinear
optimization package. 2007. Available at:
https://nlopt.readthedocs.io/ [Accessed 29
December 2024].

[3] Ruben Martinez-Cantin. BayesOpt: A Bayesian
optimization library for nonlinear optimization,
experimental design and bandits. J. Mach. Learn.
Res., 15(1):3735–3739, January 2014.

[4] Biscani, Francesco, and Dario Izzo. "A parallel
global multiobjective framework for optimization:
pagmo." Journal of Open Source Software, vol. 5,
no. 53, 2020, p. 2338. The Open Journal. DOI:
10.21105/joss.02338.

https://doi.org/10.21105/joss.02338
https://doi.org/10.21105/joss.02338

